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An error in a recent paper on bubble and drop oscillations by Temkin (J. Fluid Mech.
vol. 380 (1999), pp. 1–38) is pointed out and corrected. In this way, his results are
shown essentially to reduce to earlier ones in the literature. A concise derivation of
these earlier results is presented for the case of a gas bubble.

In several earlier papers on the oscillations of gas bubbles in liquids (e.g. Prosperetti
1977, 1991) it was shown that the behaviour of the gas in the bubble gradually
changes from isothermal to adiabatic as, with increasing frequency, the thermal
penetration depth becomes smaller than the bubble radius. In a recent paper, Temkin
(1999) questions these results arguing that the gas remains essentially isothermal. The
purpose of the present note is to point to an error in Temkin’s analysis, the correction
of which confirms the validity of the earlier results for which independent derivations
(Fanelli, Prosperetti & Reali 1981a, b) as well as experimental evidence (Crum 1983)
are available. We use Temkin’s notation throughout.

That Temkin’s result must be in error is already apparent from his figure 2 which,
near the bubble resonance frequency, shows the temperature of the gas–liquid interface
higher than the mean gas temperature. Given that the only part of the system that can
possibly undergo a significant temperature change is the gas, this result is physically
difficult to understand. Temkin’s figure 2 is essentially a consequence of his equation
(3.29). Tracing back the origin of this equation, one is led to Temkin’s expression
(3.16b) for the constant D:

D =
βpκpT

′
s

j0(qi)
, (1)

where T ′s denotes the temperature perturbation of the bubble surface, βp is the gas
coefficient of thermal expansion, and

ki =
ω

csp

[
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(
ki

Ki

)2
]
, K2

i = i
ω

κp

[
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(
ki

Ki

)2
]
, (2)

with csp and κp respectively the speed of sound and thermal diffusivity in the gas.
The omission of terms of order |ki/Ki|2 essentially amounts to neglecting the square
of the ratio of the thermal penetration depth to the sound wavelength in the gas and
is therefore well justified whenever a spherical model for the bubble is appropriate.‡
† Permanent address: Department of Mechanical Engineering, The Johns Hopkins University,

Baltimore MD 21218, USA.
‡ A spherical model will be justified provided the wavelength is large compared with the bubble

radius a. If, on this basis, we estimate the maximum value of ki as ki ∼ 2π/a and of ω by ω ∼ 2πcsp/a
we find that |ki/Ki|2 ∼ 2πκp/(acsp). For a 100 µm air bubble in water this ratio is of the order of
3.7× 10−3.
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The expression (1) for D is an approximation; the exact value found by following
Temkin’s analysis is

D =
βpκpT

′
s + (γp − 1)(k2

i /K
2
i )[p′s/(iρp0ω)]

j0(qi)[1 + (γp − 1)(k2
i /K

2
i )]

, (3)

where p′s is the pressure perturbation at the bubble surface. The second term in the
denominator is of the same order as the terms omitted in (2) and is negligible with
respect to 1; Temkin however also drops the second term in the numerator even
though it is multiplied by a relatively large quantity. For example, if one assumes the
validity of the perfect-gas laws, it is easy to show that the ratio of the second to the
first term in the numerator of (3) is

βpκpT
′
s

(γp − 1)(k2
i /K

2
i )[p′s/(iρp0ω)]

=
γp

γp − 1

T ′s/T0

p′s/p0

. (4)

This result shows that dropping the second term amounts to assuming that |T ′s |/T0

is much larger than |p′s|/p0 which is actually the opposite of the actual situation due
to the large heat capacity of the liquid relative to the gas.

The consequence of Temkin’s use of the incorrect expression (1) is his equation
(3.29)

T ′s = − 1
3
q2
i G(qi)T̄

′
p (5)

(where T̄ ′p is the average temperature perturbation in the bubble) rather than the
correct result

T ′s = 1
3
b2
i G(bi)

[(γp − 1)/γp](T0/p0)(1−H)p̄′p − [1 + (γp − 1)(ki/Ki)
2H] T̄ ′p

[1 + (γp − 1)(ki/Ki)2H][H + (ki/Ki)2(γp − 1)]− (γp − 1)(ki/Ki)2(1−H)2
,

(6)

where

H =
b2
i

q2
i

G(bi)

G(qi)
. (7)

From this point on the analysis can be continued as in Temkin’s paper. In particular,
for the case of a 100µm radius air bubble in water considered in Temkin’s figure 7,
the polytropic index behaves as shown in figure 1, where the dashed line is Temkin’s
result and the solid line the present corrected one. As expected, the polytropic index
is close to 1 at low frequencies and increases with frequency. The normalized bubble
surface temperature disturbance T ′s/T̄ ′p can also be calculated following Temkin’s
procedure with the corrected expression for D and is shown in figure 2 (solid line); as
expected both physically and on the basis of a priori quantitative estimates (Kamath,
Prosperetti & Egolfopoulos 1993), T ′s is very small compared to T̄ ′p in opposition to
Temkin’s result (dashed line) (even though, at low frequencies, |T ′s/T̄ ′p| is as large as

10%, T̄ ′p, is exceedingly small and both quantities are essentially negligible).
In conclusion it may be of some interest to point out that, if one is willing to make

the approximation T ′s � T0 at the outset, the analysis becomes extremely simple; we
present the calculation for a perfect gas.

After linearization of the conservation equations, the pressure and temperature
disturbances in the bubble are given by (see e.g. equations (2.12) and (2.13b) in
Temkin)

p′p = iρp0ω[φ1(kir) + φ2(Kir)], −κpT
′
p

T0

= (γp − 1)
k2
i

K2
i

φ1(kir)− φ2(Kir), (8)
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Figure 1. The gas polytropic exponent in a 100 µm radius air bubble in water undergoing forced
volume pulsations at an angular frequency ω according to the present corrected theory (solid line)
and to Temkin’s original theory (dashed line); a is the bubble equilibrium radius and κp the gas
thermal distinguishible. The barely distinguishable dotted line is the approximate result (16).
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Figure 2. Ratio of the temperature perturbation T ′s at the bubble surface to the volume average of
the temperature perturbation in the bubble T̄ ′p; ω is the angular frequency of the driving pressure
perturbation, a is the bubble equilibrium radius, and κp is the gas thermal diffusivity. The solid line
is the present result and the dashed line Temkin’s.

where φ1,2 satisfy a Helmholtz equation with wavenumbers ki and Ki respectively.
Temkin defines a polytropic index κT on the basis of the volume-averaged linearized

pressure–temperature relation

T̄ ′p
T0

=
κT − 1

κT

p̄′p
p0

. (9)



404 A. Prosperetti and M. Ren

Since both T̄ ′p and p̄′p are complex with different phases, the actual definition of κT is

κT = Re

(
1

1− (T̄ ′p/T0)/(p̄′p/p0)

)
, (10)

with the imaginary part related to energy dissipation.
The volume average of the expressions (8) for the pressure and temperature distur-

bances can be written in a convenient form by using the Helmholtz equations satisfied
by φ1,2 together with the divergence theorem to find

φ̄1 = − 3

aki
φ′1(kia), (11)

where φ′1(z) = dφ1/dz; the corresponding expression for φ̄2 is similar, with Ki in
place of ki. Upon using these representations for the averages, we have from (8)

T̄ ′p/T0

p̄′p/p0

=
1

γp

(γp − 1)φ′1 − (Ki/ki)φ
′
2

φ′1 + (ki/Ki)φ
′
2

. (12)

Let now

H =
ki

Ki

φ1(kia)

φ′1(kia)
φ′2(Kia)

φ2(Kia)
, (13)

which is readily seen to coincide with the previous definition (7), and note that, upon
setting to zero the temperature disturbance at the bubble surface, the second of (8)
gives

φ2(Kia)

φ1(kia)
= (γp − 1)

k2
i

K2
i

. (14)

Then (12) may be identically rewritten as

T̄ ′p/T0

p̄′p/p0

=
γp − 1

γp

1−H
1 + (γp − 1)(k2

i /K
2
i )H

, (15)

in which the last term in the denominator should be dropped for consistency with
(2). Upon substituting into (10) we thus find

κT = Re

(
γp

1 + (γp − 1)H

)
. (16)

The potentials φ1 and φ2 are solutions of the spherically symmetric Helmholtz
equation regular at the centre of the bubble with wavenumbers ki and Ki respectively
and, therefore,

H =
k2
i

K2
i

Kia cot(Kia)− 1

kia cot(kia)− 1
. (17)

However, since the spherical model only makes sense when the wavelength of the
pressure disturbance is much greater than the bubble radius so that kia� 1, one may
also use the approximation

H =
3

K2
i a

2
[1−Kia cot(Kia)] , (18)

from which

κT ' Re

(
γp(Kia)

2

(Kia)2 + 3(γp − 1)[1− (Kia) cot (Kia)]

)
, (19)
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which is equivalent to the form given in the earlier papers (e.g. Prosperetti 1977, 1991;
Prosperetti, Crum & Commander 1988). From this form one readily deduces the low-
and high-frequency limits κT ' 1 and κT → γp, respectively. The result (16) is shown
by the dotted line in figure 1, where it is barely distinguishable from the exact result
obtained using Temkin’s procedure with the correct value of D.

The definition (9) of the polytropic index used by Temkin is not the only possible
one. The definition used in our earlier papers is based on the linearized pressure–
volume relation

κV = −V0

p0

Re

(
p̄′p
V ′

)
, (20)

in which V denotes the bubble volume. In order to calculate this quantity note that

−iωV ′ =
dV

dt
= 4πa2 ∂

∂r
(φ1 + φ2)

∣∣∣∣
r=a

, (21)

so that

κV =
iωa

3p0

p̄′p
∂(φ1 + φ2)/∂r

. (22)

Proceeding as before one finds

κV = γp
1 + (γp − 1)(ki/Ki)

2H

1 + (γp − 1)H
, (23)

which, upon neglecting the second term in the numerator, coincides with (16).
The error due to the use of the incorrect form (1) of the constant D also affects

the expression for the thermal damping of the bubble but, since this matter was
adequately treated in our earlier work, we do not pursue it here.

Temkin’s theory is developed treating at the same time the case of bubbles in liquids
specifically considered above, and also droplets in gases and droplets in an immiscible
liquid. In principle, of course, the same error affects all these results although its
consequences in the liquid–liquid system would be less severe due to the smaller
thermal effects in that case.
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